Exercise 6

Verify that $(\nabla \cdot[\nabla \times \mathbf{v}])=0$ and $[\nabla \times \nabla s]=0$.
[TYPO: 0 should be in bold, as the curl operator yields a vector, not a scalar.]

Solution

The First Vector Identity

$$
\begin{aligned}
\nabla \cdot[\nabla \times \mathbf{v}] & =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left[\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} \frac{\partial}{\partial x_{j}}\right) \times\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} v_{k}\right)\right] \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left[\sum_{j=1}^{3} \sum_{k=1}^{3}\left(\boldsymbol{\delta}_{j} \times \boldsymbol{\delta}_{k}\right) \frac{\partial v_{k}}{\partial x_{j}}\right]=\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left(\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{l} \varepsilon_{j k l} \frac{\partial v_{k}}{\partial x_{j}}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{i} \cdot \boldsymbol{\delta}_{l}\right) \varepsilon_{j k l} \frac{\partial}{\partial x_{i}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \delta_{i l} \varepsilon_{j k l} \frac{\partial}{\partial x_{i}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right) \\
& =\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \frac{\partial}{\partial x_{l}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right)
\end{aligned}
$$

Rewrite the triple sum with j for l and l for j. This can be done because they are dummy indices.

$$
=\sum_{l=1}^{3} \sum_{k=1}^{3} \sum_{j=1}^{3} \varepsilon_{l k j} \frac{\partial}{\partial x_{j}}\left(\frac{\partial v_{k}}{\partial x_{l}}\right)
$$

Arrange the sums so that they're the same as the triple sum in blue. This can be done because the limits on each sum are constants.

$$
=\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{l k j} \frac{\partial}{\partial x_{j}}\left(\frac{\partial v_{k}}{\partial x_{l}}\right)
$$

Use Clairaut's theorem to interchange the order of the derivatives. This is possible if the second derivatives are continuous.

$$
=\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{l k j} \frac{\partial}{\partial x_{l}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right)
$$

Move the j-index from the end to the beginning in the permutation symbol. Doing so does not change the sign.

$$
=\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j l k} \frac{\partial}{\partial x_{l}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right)
$$

Switch the k and l indices in the permutation symbol. Doing so changes the sign.

$$
=-\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \frac{\partial}{\partial x_{l}}\left(\frac{\partial v_{k}}{\partial x_{j}}\right)
$$

The only number equal to its negative is zero. Therefore,

$$
\nabla \cdot[\nabla \times \mathbf{v}]=0
$$

The Second Vector Identity

$$
\begin{aligned}
\nabla \times \nabla s & =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \times\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} \frac{\partial s}{\partial x_{j}}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) \frac{\partial}{\partial x_{i}}\left(\frac{\partial s}{\partial x_{j}}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial s}{\partial x_{j}}\right)
\end{aligned}
$$

Rewrite the triple sum with j for i and i for j. This can be done because they are dummy indices.

$$
=\sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial s}{\partial x_{i}}\right)
$$

Arrange the sums so that they're the same as the triple sum in blue. This can be done because the limits on each sum are constants.

$$
=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial s}{\partial x_{i}}\right)
$$

Use Clairaut's theorem to interchange the order of the derivatives. This is possible if the second derivatives are continuous.

$$
=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial s}{\partial x_{j}}\right)
$$

Switch the j and i indices in the permutation symbol. Doing so changes the sign.

$$
=-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial s}{\partial x_{j}}\right)
$$

The only vector equal to its negative is the zero vector. Therefore,

$$
\nabla \times \nabla s=\mathbf{0}
$$

